This Pascal program finds the value of a Nth order polynomial:
a_{n}x^{n}+a_{n-1}x^{n-1}+cdots+a_{1}x+a_{0}
implementing Horner method without using any complex arithmetic in Fortran 77.

Obviously, it can find complex values, for complex x’s, but without complex arithmetic.
The program also uses ANSI codes to clear screen.

        PROGRAM HORNER1
        REAL A(0:30),B(0:30),K,L,IM,R,AT,BT,PR,PIM
        INTEGER N,I
        CHARACTER ESC
 
        ESC=CHAR(27)
 
        CALL CLS()
        WRITE (*,*) 'PLEASE, ENTER THE CLASS N OF THE POLYNOMIAL:'
        READ (*,*) N
 
        WRITE (*,*) 'ENTER a0,a1,a2,a3...aN'
C       READ (*,*) (A(I),I=0,N)
        DO 5 I=0,N
        READ(*,*) A(I)
5       CONTINUE
 
C       x1= a+bi   where a=R AND  b=IM
 
        WRITE (*,*) 'TYPE THE REAL AND THE IMAGINARY PARTS OF X1:'
        READ (*,*) R,IM
 
        WRITE (*,*) 'CALCULATING....'
 
C       x^2-2ax+a^2+b^2
C       P(x)=(x^2-kx-lx)P2(x) + Ax+B
C       k=2a     l=-^2-b^2
 
        K=2*R
        L=-R^2-IM^2
 
        WRITE (*,*) 'K,L are:' , K,L
 
C       HORNER ROUTINE:
C       Bn=An, Bn-1=An-1 + kBn, Bk-2=Ak-2 + kBk-1 + l Bk ,k=n,...2
C       A=B1 , B=B0
C       P(x1)=Ax1 + B
 
 
        B(N)=A(N)
        B(N-1)=A(N-1)+K*B(N)
 
        WRITE (*,*) '....CALCULATING....'
 
        DO 10 I=N,2,-1
        B(I-2)=A(I-2)+K*B(I-1)+L*B(I)        
 
10      CONTINUE
 
 
C       A=B1
C       B=B0-kB1
 
        AT=B(1)
        BT=B(0)-K*B(1)
 
        CALL CLS()
 
        WRITE(*,*) 'A,B=',AT,BT
 
C       P(x1)=AX1 + B
 
 
        PR=AT*R+BT
        PIM=AT*IM
 
        WRITE (*,20) ESC,PR,PIM
20      FORMAT(1X,A,'[10;3f','The value of P=','(',F8.3,',',F8.3,')')
 
 
        STOP
        END
 
        SUBROUTINE CLS ()
        CHARACTER ESC
        ESC= CHAR(27)
        WRITE (*,100) ESC
100       FORMAT(1X,A,'[2J')
        WRITE (*,*) 'N-R HORNER METHOD -- VALUE OF CLASS N POLYNOMIAL
     B  WITHOUT COMPLEX ARITHMETIC' 
        RETURN
        END